
 

 

  

 

국방모바일보안 
SECURITY AND 
PRIVACY REVIEW 
By Ovi Liber 

 

APRIL 26th, 2023 



 

 

1 

 

Contents  

1_ KEY FINDINGS ................................................................................................................................................... 4 

2_ INTRODUCTION ............................................................................................................................................... 4 

3_ METHODOLOGY ............................................................................................................................................... 8 

3.1_ Limitations .................................................................................................................................................. 8 

3.2_ Process ......................................................................................................................................................... 8 

3.3_ Application versions ............................................................................................................................. 9 

3.4_ Testing Environment............................................................................................................................. 9 

3.5_ Dynamic Analysis & Traffic Interception Tools Setup ....................................................... 9 

3.6_ Static Analysis Tools Setup ............................................................................................................ 10 

4_ FUNCTIONALITY, PRIVACY & DATA COLLECTION .................................................................... 11 

4.1_ Network connectivity ........................................................................................................................ 11 

4.2_ Services ..................................................................................................................................................... 15 

4.2.1_ ServiceAEGIS – Solider, Staff & External........................................................................ 15 

4.2.2_ ServiceAlert – Solider, Staff & External .......................................................................... 19 

4.2.3_ ServiceCall – Staff ....................................................................................................................... 19 

4.2.4_ ServicePolicy – Solider, Staff & External ........................................................................ 20 

4.2.5_ ServiceMFHW – External ......................................................................................................... 21 

4.2.6_ ServiceMFLG – Solider, Staff & External ........................................................................ 21 

4.2.7_ ServiceMFSS – Solider, Staff & External......................................................................... 21 

4.2.8_ ServiceDeviceAdmin – Solider, Staff & External ........................................................ 21 

4.2.9_ ServiceLocation – Solider, Staff & External .................................................................. 21 

4.3_ Broadcast receivers ............................................................................................................................ 22 

4.3.1_ BroadcastReceiverExternal – Solider, Staff & External ........................................... 23 

4.3.2_ BroadcastReceiverGDA_LG – Solider, Staff & External ........................................... 23 

4.3.3_ BroadcastReceiverRestartAegisSAFER – Solider, Staff & External ................... 23 



 

 

2 

 

4.3.4_ BroadcastReceiverSystem – Solider, Staff & External ............................................ 23 

4.3.5_ BroadcastReceiverCall - Staff ............................................................................................... 24 

4.4_ Personal data ......................................................................................................................................... 24 

4.5_ Local SQL Database ............................................................................................................................ 33 

5_ SECURITY .......................................................................................................................................................... 39 

5.1_ Vulnerable broadcast receivers .................................................................................................... 39 

6_ REFERENCES .................................................................................................................................................... 44 

 

 

  



 

 

3 

 

ABOUT OVI LIBER 

Ovi Liber is an independent security researcher and hacktivist known for his 

work in exposing vulnerabilities related to privacy, security, and corporate 

malfeasance. He focuses primarily on Advanced Persistent Threats (APTs), 

government surveillance, and corporate privacy violations, advocating for the 

protection of human rights in the digital space. Ovi Liber has a background in 

hacking, programming, and reverse engineering, and has spent over 15 years 

in this field. 

He gained attention for uncovering critical vulnerabilities in various systems. 

He has also been involved in researching nation-state cyberattacks and 

Android malware targeting human rights activists and journalists, such as the 

RambleOn spyware. 

Liber advocates for transparency, privacy, and decentralization, frequently 

publishing his research on his blog and collaborating with non-profits to 

enhance digital defense for civil society 

Find us at: https://0x0v1.com 

Reach us at: 0x0v1@proton[.]me  

 

 

Disclaimer: The information contained in this report is intended for informational 

purposes only. Ovi Liber does not guarantee or take responsibility for the accuracy, 

completeness and reliability of any third-party statements or research referenced 

herein. The analysis expressed in this report reflects the current understanding of 

available information by our researchers and may be subject to change as additional 

information is made known to us. Readers are responsible for exercising their own 

due diligence when applying this information. Ovi Liber does not condone any 

malicious use or misuse of the information presented in this report.  



 

 

4 

 

1_ KEY FINDINGS 

• The developer of the application states that the application does not store 

any user generated personal data, such as contact lists, videos, photos or 

SMS data. HoIver, based on our analysis, the application did store 

sensitive personal data including geolocations with precise timestamps. 

Our analysis deems this to be in breach of safeguarding of sensitive data 

and is a privacy and security risk to users and the Ministry of National 

Defense themselves. 

• For the Staff and External version of the application, I identified two 

vulnerabilities that would allow an attacker to export the personal data 

without requiring any permissions. If an attacker had access to the 

device, they would be able to export all application log files, which include 

coarse GPS locations and respective timestamps. 

• Our evidence found that the application contained unused code and 

functionality that would raise further privacy or security concerns. 

2_ INTRODUCTION 

The Defence Mobile Security App (국방모바일보안) is a smartphone application 

that is distributed and developed by the Ministry of National Defence (MND). The 

application is required to be installed by soldiers, employees and external 

members that are involved with MND. It aims to provide service personnel with a 

camera blocking methodology based on location, in order to avoid leaks to 

military data. The application utilises to primary features, a blocking function and 

an allowing function for the phone’s camera. The camera blocking function, uses 

NFC devices within military sites that once tagged block the cameras functionality 

in order to safeguard any potential leakage of military information. The camera 

allowing function recognises Bluetooth beacon devices located in guard posts 

which allow the personnel to regain access to their phone’s camera functionality. 

If personnel are unable to find a beacon to enable their camera functionality, 



 

 

5 

 

they are able to go to a public place defined by hard coded geo-locations in the 

application, to unlock the camera.  

The application notably requires a large number of high privileges on the device 

upon installation. HoIver, the MND state that the application does not collect or 

handle any personal information of its users, and that the permissions aquired by 

the application are in accordance with Article 22-2 of the Information and 

Communication Network Act (agreement to access rights). Furthermore, MND 

outline that the application operates on a serverless basis.  

Since its release in November 26, 2019 and integration betIen December 2019 

and March 2020, the application has over 500,000 installs, with ratings converging 

to 1 star [1]. The application, which had a budget of 3.5 billion won, has caused a 

notable amount of controversy across service personnel, receiving a large number 

of bad reviews on the application stores [2]. Many complaints and questions have 

been raised by users within app store pages, discussing how the application does 

not functionally work and also asking questions about security & privacy 

concerns [3].  

The application contains many indications of development by MarkAny 

AegisSAFER (https://www.samsungknox.com/en/partner-solutions/markany-

aegissafer). Thus, analysis therein this report may include features and code that 

Ire implemented by this organisation rather than MND themselves. I cannot 

delineate betIen the two.  

I decided to analyse the Android versions of the applications, to firstly identify if 

there are indeed any security or privacy risks relevant in the applications; 

secondly to provide a clear understanding to users of how the applications 

actually work. I spent a number of months reverse engineering the applications 

and reviewing them both statically and dynamically.  

The Android applications discussed are found here: 

https://www.samsungknox.com/en/partner-solutions/markany-aegissafer
https://www.samsungknox.com/en/partner-solutions/markany-aegissafer


 

 

6 

 

• Soldier - kr.go.mnd.mmsa: 

https://play.google.com/store/apps/details?id=kr.go.mnd.mmsa 

• Staff - kr.go.mnd.mmsa.of: 

https://play.google.com/store/apps/details?id=kr.go.mnd.mmsa.of 

• External - kr.go.mnd.mmsa.vt 

https://play.google.com/store/apps/details?id=kr.go.mnd.mmsa.vt 

The result of this research found that all three versions of the application have 

verbose logging of coarse GPS locations, in combination with date and 

timestamps. This logging exists for the history of the application & presents a 

significant privacy risk to personnel. According to the Location Information 

Protection Act (LIPA), GPS locations are regarded personally identifiable 

information when combined with other data. As a result, I found that the 

developers of this application actively misled users by stating the application 

does not collect personal information. Furthermore, due to collection, storage and 

user of location data by the application, I found multiple breaches of the articles 

found in LIPA with regard to the correct handing and processing of GPS data.    

In addition, I found a security vulnerability in two version of the application (staff 

& externals) that would allow an attacker extract all log data that the application 

has generated, which includes coarse GPS locations, without requiring any 

permissions or root access on the device. I submitted a responsible disclosure 

notice to our findings on the 10th of March 2023. In our disclosure notice of 

these vulnerabilities to The Ministry of National Defence, I detailed how an 

attacker could leverage it and how to fix it. The Ministry of National Defence did 

https://play.google.com/store/apps/details?id=kr.go.mnd.mmsa
https://play.google.com/store/apps/details?id=kr.go.mnd.mmsa.of
https://play.google.com/store/apps/details?id=kr.go.mnd.mmsa.vt


 

 

7 

 

not respond to me, and at the time of publication of this report, the latest 

version of the application remains vulnerable. 

  

The report is grouped into the following sections: 

Methodology 

This section describes my methodology in analysing the Android applications, 

including app versions, in order to provide repeatability in to our analysis.  

Privacy 

This section covers an analysis of any privacy related issues regarding the 

Android applications across all three versions (solider, staff & external). This 

includes analysis of network traffic to understand server interactions. We found 

that the applications are indeed serverless and do not have any capability to 

receive remote network traffic. We cover the collection and storage of personal 

information, which we found there to be only the collection of coarse GPS 

location data when a user attempted to unlock the device’s camera in a public 

location. We also cover static analysis of the applications code which found 

there to be functionally to remotely disable features of the device.  

Security 

This section covers an analysis of the security of the applications. This includes 

analysis of any possible security vulnerabilities identified within the application 

which could be used by an attacker and cause risk to the users. We found that 

two versions of the application (staff & external) had a notable security 

vulnerability that allowed an attacker to export the applications log data which 

would include the coarse GPS locations. 



 

 

8 

 

3_ METHODOLOGY 

In this section, I provide a high-level overview of our methodology to analyse 

these applications. 

3.1_ Limitations 

With regards to dynamic analysis of the applications. I Ire only able to analyse 

these applications remotely with no access to NFC or beacon devices, since these 

are located in military sites. Because of this, I chose to use Android emulators 

within our analysis to provide efficiency. I took into account that emulators do 

not have Bluetooth or NFC functionality, though it should be noted that runtime 

hooking alloId us to bypass many checks from the app to circumvent this and 

emulate behaviour. As such, all analysis therein this research should take this into 

account. HoIver, in consideration of this limitation, I knew that the Bluetooth and 

NFC unlocking and locking functionality didn’t impact the data collection or 

security vulnerabilities of the application. Thus, analysing on an emulated device 

did not limit our ability to understand privacy and security related issues within 

these applications. In consideration of limitations, please also encompass the 

disclaimer described in page 2. I Ilcome and encourage further analysis from the 

industry, where differing analysis paths will identify further results.  

3.2_ Process 

I lightly used the following process to analyse the application both dynamically 

and statically: 

1. Capture any network traffic when the application is functioning normally, 

including utilising all activities available within the application during 

capture.  

a. Identify any network traffic that would indicate server interactions 

with the device 

2. Dynamically hook classes and methods of value to intercept returned 

values such as AES keys, in order to unencrypt stored files & encoded data 

within the application.  



 

 

9 

 

3. Dynamically hook activities and interesting classes or methods, to watch or 

modify arguments, backtraces and returns. I would often intercept and 

modify Boolean return values and string values to bypass certain activities 

in order to fully analyse the application.  

4. Statically reverse engineer the source code to determine how data is 

collected and utilised within the application.  

3.3_ Application versions  

• 국방모바일보안(병사) App 2.1.05  

• 국방모바일보안(외부인) 2.1.18  

• 국방모바일보안(직원) 2.1.25  

3.4_ Testing Environment 

• Android Studio Emulator Virtual Device 

o Android 8.0 Google API 

o System image Android-26 x86 

• System locale set to South Korean (ko_KR) 

• GPS Location set to Seoul central location 

• Set gsm.operator.iso-country to KR 

3.5_ Dynamic Analysis & Traffic Interception Tools Setup 

• Application recompiled using Objection (Version 1.11.0) & APKTool 

(Version 2.7.0) to contain libfrida-gadget 

o Gadget version: Frida-gadget-16.0.9-android-x86 

• Traffic inspection tools: 

o Burp Suite Community Edition 

o Burp CA (Certificate Authority) installed to system store 

o Application SSL Underpinned  

o Android Studio manual proxy configuration 

• System manufacture modification to Samsung using Frida Javascript script  



 

 

10 

 

o  

 

 

 

 

• In order to bypass root detection, integrity checks and other device checks, 

I used numerous custom hooking scripts facilitated by Frida runtime 

toolkit. For the security of the application and MND personnel, I have 

chose not to include these in this report.  

• Drozer Security Testing Framework 

o Version 2.4.4 Docker build: 

https://hub.docker.com/r/fsecurelabs/drozer 

3.6_ Static Analysis Tools Setup 

• APKTool (Version 2.7.0) 

• Jadx (Version 1.4.5) 

• Dex2jar (Version 2.1) 

 

Java.perform(function () { 

    var buildProps = Java.use('android.os.Build'); 

    console.log(JSON.stringify(buildProps.MANUFACTURER)) 

    buildProps.MANUFACTURER.value = "Samsung"; 

    console.log(JSON.stringify(buildProps.MANUFACTURER)) 

}); 

 

https://hub.docker.com/r/fsecurelabs/drozer


 

 

11 

 

  

4_ FUNCTIONALITY, PRIVACY & DATA COLLECTION 

Since all three versions of the application contain functionality that similar, 

varying only be way of omittance of certain functionality e.g. the employee and 

external version of the application only vary by one feature. Where I refer to the 

“app”, I mean all three versions of the application. If I specifically refer to one 

version of the application, I will define this.  

4.1_ Network connectivity 

During our analysis, I found the application to be indeed a serverless application. 

I did not identify any server communication with our testing devices and upon 

review of the decompiled code, I did not identify any active connectivity.  

Within the Soldier version of the application, there is one connection made to an 

endpoint owned by AegisSAFER. HoIver, I note that this simply returns some 

version information. This was not observed in the Staff and External versions of 

the application. The only other network connection seen across the application is 

when a user would initiate a download of the manual, which would reach out to 

an AegisSAFER endpoint. 

 

Figure 1 Class responsible for connecting to AegisSAFER endpoint 

Though the version check described above was the only connection initiated 

without the user’s interaction identified across the applications, an important 

factor is hoIver, is that the application does contain source code that indicates 

the ability to communicate to a server. In the versions of the app I tested, I 



 

 

12 

 

though I did not see these implemented, I cannot disprove usage in previous 

versions (and of course, in future versions). 

The application is compiled with a configuration file that is written to the disk. 

This configuration file is written to the applications data directory as seen in 

Figure 1. This file is a JSON file, that is AES/CBC/PKCS5Padding encrypted and 

encoded with Base64. 

 

Figure 2 Configuration file location 

This configuration file, on all three versions contained multiple index’s which 

relates to differing versions of the application. These contained key value pairs 

that define how the application should run. An example of this can be seen in 

Figure 3, where I have omitted the server URLs and contact information for 

protection of MND assets. 

 

Figure 3 Unencrypted/unencoded configuration file ConfigMndMDM.json 



 

 

13 

 

Figure 3, shows there to be a “check” value within “serverURL” which contains a 

URL with the URI “/enter-logs/insert”. Our analysis found this URL did not appear 

to be used in the versions I tested.  

Further, the configuration file appears to be an implementation by AegisSAFER to 

provide configuration to what functionally the application includes. This is 

implemented by checking which authorisation code is used to register the 

application, which then defines which configuration is used. In order to provide 

safety to MND assets, I have not disclosed the authorisation codes, hoIver it is 

noted that these are provided directly to personal by the MND. As a result, I 

cannot determine who receives what authorisation code. The implementation of 

this can be seen in the source code shown in figure 4.  

 

Figure 4 Source code demonstrating configuration file determination based on AES encrypted & base64 

Encoded authorisation values 

Below in Table 1, I have compiled a list of these configurations in relation to the 

authorisation codes: 



 

 

14 

 

  mndmd

m 

mndmd

m1 

mndmd

m2 

mndmd

m3 

mndmd

m4 

Device 

Environme

nt  

Forgery 1 1 1 1 1 

 Debugger 0 0 0 0 0 

 Validation 1 1 1 1 1 

 Update 0 0 0 0 0 

 Network 0 0 0 0 0 

 AutoTime 0 0 0 0 0 

 DeletePop

up 

1 1 1 1 1 

Check In 

Functional

ity  

QR 1 1 1 1 1 

 Self 1 1 1 1 1 

 NFC 1 1 1 1 1 

Check Out 

Functional

ity 

Sound 1 1 1 1 1 

 GPS 1 1 1 1 1 

 NFC 1 1 1 1 1 

 Beacon 1 1 1 1 1 

 SMS 1 1 1 1 1 

Access 

Policy 

Camera 1 1 1 1 1 

 Wifi 0 0 1 0 0 

 Bluetooth 0 0 0 0 0 

 Tethering 0 0 1 1 1 

 Mic 0 1 1 1 1 

 USB 0 0 1 1 1 

 SDCard 0 0 0 0 0 



 

 

15 

 

 NFC 0 0 0 0 0 

 GPS 0 0 0 0 0 

 Reset 1 1 1 1 1 

 Iris 1 1 1 1 1 

Table 1 Configuration options based on authorisation code 

The “Device Environment”, “Check In Functionality” and “Check Out Functionality” 

configurations all remain consistent across authorisation codes. Though, I can see 

that “Access Policy” configurations slightly vary betIen authorisation codes. 

Meaning that differing groups of personal in the MND have differing access 

policies to their devices. The Mndmdm2 configuration is the only configuration 

that sets the Wifi access policy to True. 

4.2_ Services 

There are slight variations in the services across each application version. Below I 

have broken down each service that is seen across each application. I aim to 

cover what its functionality is and under what conditions the service is initiated. 

Since services vary, I have defined for each service, which application it is seen 

on. I should also note that none of these services Ire exported, meaning they Ire 

not accessible to be directly created to anybody outside of the application (this 

does not exclude exported Broadcast Receivers, that do have the ability to start 

services, which I will cover in the next section). 

4.2.1_ ServiceAEGIS – Solider, Staff & External 

This service contains a message handler that checks for OS messages that contain 

values seen in figure 5, when the service is started. Depending on the message 

value, the returned string would be appended to the local log file & also write 

the information to the local SQL database. It appeared to us hoIver, that this 

functionality seemed to be remnants of a previous version or perhaps left over 

source code, since most of these values Ire not visibly of use within the 

applications.    



 

 

16 

 

 

Figure 5 Value case return for message handler 

The service is able to receive Intents from the local application 

(https://developer.android.com/guide/components/intents-filters), though one 

Intent is available from external to the application which is discussed later within 

the security section. The app filters for the following intents and performs the 

subsequent action if the filter is seen (source code is also shown for this in Figure 

6): 

https://developer.android.com/guide/components/intents-filters


 

 

17 

 

• com.markany.aegis.[app version code].MSTICKER_SERVICE 

o Checks for system versions and relevant permissions 

• android.intent.action.BOOT_COMPLETED 

o Checks for system versions and relevant permissions 

• com.markany.aegis.gate.AEGIS_GATE_ACTION_AGENT_RELEASE 

o Modifies configuration to contain a destroy command, which 

additional services described below check and then will destroy the 

application. 

• com.markany.aegis.AEGIS_ACTION_ADMIN_REQUEST  

o This intent has two functions (figure 7 demonstrates this logic): 

▪ Export the local application log file to storage directory on 

device 

▪ Disable GateKeeper and allow the application to be 

uninstalled by the user 

 

Figure 6 Source code demonstrating handleIntent filters for service 



 

 

18 

 

 

Figure 7 Release or Export method within the ServiceAEGIS service 

  



 

 

19 

 

4.2.2_ ServiceAlert – Solider, Staff & External  

The ServiceAlert service simply created text to speech and message alerting to 

the user & application based off application functionality.  

4.2.3_ ServiceCall – Staff 

The ServiceCall service is only implemented in the Staff version of the application. 

This service started when the Broadcast Receiver ‘BroadcastReceiverCall’ , 

discussed in section 4.3.5, when it receives a broadcast intent with 

"android.intent.action.NEW_OUTGOING_CALL" or 

"android.intent.action.PHONE_STATE", this can be seen in Figure 8. Simply, when a 

user receives or makes an outgoing call, this service is started, the details of the 

service creation and intents received are logged in the application log file as seen 

in Figure 9. The service essentially parses the data from the phone call, which 

includes the phone number, and writes the data to the applications SQL database 

covered in 4.5. It should be noted though, that in order for this service to be 

created, the company device lock status is checked, creating a condition for 

whether the service is ran or not – seen in figure 10. 

 

Figure 8 Source code of ServiceCall service. 



 

 

20 

 

 

Figure 9 Application log file showing service actions 

 

Figure 10 DeviceLockStatus check 

4.2.4_ ServicePolicy – Solider, Staff & External 

The ServicePolicy service performs configurations to the configuration file 

described in the previous sections. Depending on authorisation codes received, 

the configuration file will be changed by this service, this was described in more 

detail in section 4.1. An example of this can be seen in Figure 11, where the 

method checks for authorisation codes and configures the configuration file. The 

SQL Database for the application is also updated with any of these changes.  



 

 

21 

 

 

Figure 11 Example of configuration modifications within ServicePolicy service 

4.2.5_ ServiceMFHW – External 

This service simply sets up policy settings for HuaIi model phones, much like the 

previous service description. 

4.2.6_ ServiceMFLG – Solider, Staff & External 

This service is equal to 4.2.5, except it is specific to LG models. 

4.2.7_ ServiceMFSS – Solider, Staff & External 

This service is equal to 4.2.5, except it is specific to Samsung models. 

4.2.8_ ServiceDeviceAdmin – Solider, Staff & External 

This service sets up Device Administration in accordance to Android 

https://developer.android.com/guide/topics/admin/device-admin  

4.2.9_ ServiceLocation – Solider, Staff & External 

This service monitors for location provider changes to the Android device and 

updates the application accordingly. 

https://developer.android.com/guide/topics/admin/device-admin


 

 

22 

 

4.3_ Broadcast receivers  

In this section, I will discuss the Broadcast Receivers within the application and 

their functions. Firstly, I wish to highlight that the only Broadcast Receiver that is 

exported (externally callable) across the applications is the 

“BroadcastReceiverExternal” – which is exported in the kr.go.mnd.mmsa.of (Staff) 

& kr.go.mnd.mmsa.vt (External) versions of the applications. Exported Broadcast 

Receivers mean that the receiver is callable by anybody on the device. In 

addition, these receivers do not have any permissions set. The AndroidManifest 

for the External version of the application can be seen in figure 12, showing the 

exported Broadcast Receiver, figure 13 also highlights the permission 

requirements. In section 5, I will discuss how this exported Broadcast Receiver can 

be abused by an attacker to leak personal data from the application. 

 

Figure 12 Android manifest for kr.go.mnd.mmsa.of (Staff) & kr.go.mnd.mmsa.vt (External) displaying an 

exported broadcast receiver. 



 

 

23 

 

 

Figure 13 Permissions requirements 

4.3.1_ BroadcastReceiverExternal – Solider, Staff & External 

This receiver has an intent filter of 

“com.markany.aegis.AEGIS_ACTION_ADMIN_REQUEST”, once this broadcast 

receiver receives a broadcast with this intent, it creates the ServiceAEGIS 

(described in section 4.2.1), which checks to see if there is an extra string key 

value of “action_admin” & “action_admin_exportLog” or "action_admin_release" 

within the broadcast. As described in 4.2.1, it will then perform one of two 

functions based on the above values:  

• Export the local application log file to storage directory on device 

• Disable GateKeeper and allow the application to be uninstalled by the user 

4.3.2_ BroadcastReceiverGDA_LG – Solider, Staff & External 

This receiver checks for any intents involving device admin configuration for LG 

models and based on received intents will perform certain configurations and 

utilise the ServiceDeviceAdmin service described in 4.2.8. 

4.3.3_ BroadcastReceiverRestartAegisSAFER – Solider, Staff & External 

This Broadcast Receiver appears to accept intents with filters that relate to the 

Aegis GATEs, such as 

"com.markany.aegis.gate.AEGIS_GATE_SERVICE_DEVICE_ADMIN". When the 

receiver receives such an intent, it will start the ServiceDeviceAdmin service 

(4.2.8). 

4.3.4_ BroadcastReceiverSystem – Solider, Staff & External 

This receiver simply looks for system start up, and start the ServiceAEGIS (4.2.1) 

service. 



 

 

24 

 

4.3.5_ BroadcastReceiverCall - Staff 

This broadcast receiver starts the ServiceCall service described in 4.2.3 when an 

intent is received relating to a new outgoing phone call or phone state change. 

This will be started if the DeviceLockStatus setting checks out. Figure 14 

demonstrates this.

 

Figure 14 Source code for BroadcastReceiverCall 

4.4_ Personal data 

The applications, kr.go.mnd.mmsa (Soldier), kr.go.mnd.mmsa.of (Staff) 

& kr.go.mnd.mmsa.vt (External), all log GPS location data in combination to 

precise timestamp and date in a daily log file created in the 

/data/user/0/kr.go.mnd.mmsa/files/MobileSticker/log directory, as seen in figure 

15.  This is due to the activity ActivityCheckOutGPS utilising the class shown in 

figure 16 (note this just represents the specific class in 

the kr.go.mnd.mmsa.vt version of the application, the class name differs across 

applications due to obfuscation, the comparable class names should be acquired 

for each individual application). When a user utilises any GPS functionality that 

involves the activity ActivityCheckOutGPS, such as when they attempt to unlock 

the phone via GPS, this logging action will occur. An example of this logging can 

be further seen in Figure 17. 



 

 

25 

 

 

Figure 15 Example of GPS location data stored in log file within directory 

/data/user/0/kr.go.mnd.mmsa/files/MobileSticker/log 

 

Figure 16 kr.go.mnd.mmsa.be class logging GPS location data within the kr.go.mnd.mmsa.vt application 



 

 

26 

 

 

Figure 17 Example of GPS logging within application log file 

In storing GPS logging location data within the application log file, this breaks 

Common Iakness Enumeration ID 532 (Insertion of Sensitive Information into Log 

File) [4]. MITRE’s description of CI-532 states: 

“Information written to log files can be of a sensitive nature and give valuable guidance 

to an attacker or expose sensitive user information. While logging all information may be 

helpful during development stages, it is important that logging levels be set 

appropriately before a product ships so that sensitive user data and system information 

are not accidentally exposed to potential attackers.” 

In addition to this, MITRE also give a demonstrative example in their description 

of CI-532, which includes the incorrect logging of the user’s current location data.  



 

 

27 

 

This presents a significant risk to users of these applications, since the application 

is storing a historical log of their coarse GPS locations. In addition, I believe this 

to be a significant privacy risk considering a number of factors: 

1. In the description of the application, MND state that this application “… 

does not collect and handle any personal information of users”, see Figure 

18. According to the Location Information Protection Act (LIPA) [5] – it is 

stated that personal location information data is can be used personally 

identify an individual (Article 2: The term "personal location information" 

means the location information regarding a particular person (including 

information readily combinable with other information to track the location 

of a particular person even though location information alone is not 

sufficient to identify the location of such person)). Thus, by this, GPS 

location data is regarded a personal information. Yet, in all application, 

kr.go.mnd.mmsa(Solider), kr.go.mnd.mmsa.of (Staff) & kr.go.mnd.mmsa.vt 

(External), store historical GPS locations of the user within its log file. 

Furthermore, this logfile, within kr.go.mnd.mmsa.of (Staff) & 

kr.go.mnd.mmsa.vt (External) is unprotected and can be exported by 

anybody with access to a device (see later discussion in section 5). 

2. According to LIPA, it is required for any collection of personal location 

information to be disclosed to the individual. The only notification to users 

of these applications of GPS location data being collected, is by way of 

GPS permission requirement on the phone. HoIver, the application itself 

and within the Google Play store (see Figure 19) does not state anywhere 

that it collects GPS location data and stores it in a log file. I see this as a 

breach of responsibly declaring the privacy policy of the application.  

3. According to LIPA, personal location information must be immediately 

destroyed when the purpose of collection, use or provision of personal 

location information is achieved. Since the application is required to record 

the GPS location and compare it with the location of approved locations 

stored within the JSON file on the device, once this check is complete, GPS 



 

 

28 

 

location is no longer required. Thus, the lack of destruction of personal 

location information after its use is in breach of LIPA.  

4. According to LIPA, those information providers who are using personal 

location information data are required to “take managerial measures, such 

as establishing guidelines on processing and management of location 

information to prevent the divulging, alteration, impairment, etc. of 

location information or designating those with access authority, and take 

technical measures, such as installing a firewall or using encryption 

software. In such cases, details of the managerial measures and technical 

measures shall be prescribed by Presidential Decree.”. Thus, it is MND’s 

responsibility to ensure that personal information location data is not 

abused. Due to the vulnerability found in section 5, I see this logging as a 

breach of this article.  

In the addition to the above, MND also state multiple times across distribution of 

the application that they do not collect personal information, despite collecting 

GPS location data:  

1. Figure 18 shows MND declare in the description (repeated across all 

three applications) that you do not collect personal information of 

users. LIPA states that location data can be personally identifiable in 

combination with other data and this, is personal information.  

2. Figure 19 shows MND declare on the Google Play store that no data is 

collected. This is untrue, since GPS location data is stored in a log file 

on the device, this logfile can be exported by anybody with access to 

the device (both remotely & physically) - see section 5.  

3. Figure 20 & 21 show two separate displays within the application 

declaring that the application does not collect personal information. 

 



 

 

29 

 

 

Figure 18 Application description 



 

 

30 

 

 

Figure 19 Google Play - data security page 



 

 

31 

 

 

Figure 20 Notification message declaring the application does not collect personal information 



 

 

32 

 

 



 

 

33 

 

Figure 21 Manual page declaring that the pplication does not collect personal information 

4.5_ Local SQL Database 

The application contains a local SQL database called AegisGate.db. 

This database records and stores information about the device, some of the 

information can be seen in figure 22, such as Admin Telephone information, 

Device information and Configuration information. It also stores functional 

information such as device lock statues etc, which get checked by the application 

to perform certain functionality, some of which is described in earlier sections.  

 

Figure 22 AegisGate.db tables 

The most notable aspects of this database appear to be within the following 

tables: 

• AdminTelInfo 

• ConfigInfo 

• AgentK 

For applications such as the External version, an AdminTelephone number is 

required to be inputted by the user. Where this is required, this telephone 

number is recorded in the AdminTelInfo table.  

For the Staff version of the application, which includes the ServiceCall class 

(section 4.2.3) & BroadcastReceiverCall class (section 4.3.5), incoming and 

outgoing phone numbers are recorded in the ConfigInfo table, as shown in 

Figure 23.  



 

 

34 

 

 

Figure 23 ConfigInfo table within Staff version of the application 

Whilst the storage of Admin telephone number, incoming and outgoing numbers 

may not be a privacy concern, I found there to be no functional reason for this. 

Since the application did not use this data in anyway. What creates further 

confusion, is the encoding and encrypting of this data. 

All the values contained within the database are encrypted with 

AES/CBC/PKCS5Padding & encoded with base64. HoIver, unlike other encryption 

by the device, the AES Key is generated based on the time stamp. When the 

application logs any data into the database, it records the current time stamp 

(you can see an example of this in Figure 23). This timestamp is encoded with 

SHA256, resulting in a 32-byte value, which is used as the Key for the AES 

encryption. In combination with the IV value, which is generated by the 

application, the phone number is encrypted and then encoded with base-64 

(figure 24 demonstrates this). 

 

Figure 24 Encryption method for phone numbers within the database 

What is most notable here, is that the Key that was generated within this 

method, based on the timestamp, is stored in the database file. The AgentK 



 

 

35 

 

table stores all the AES Keys generated by specific timestamps each time one is 

created. To summarise this simply with the example of incoming phone calls to 

the Staff application: 

1. When an incoming phone call is received, the phone number and 

timestamp is captured. 

2. The timestamp is used to create an AES Key using SHA256 and with an IV 

generated by the application, the phone number is encrypted.  

3. This encrypted phone number, is then base-64 encoded and stored within 

the ConfigInfo table, as seen in Figure 23.  

4. The AES Key generated in step 2, in addition to the timestamp it used to 

generate that Key, is stored in the AgentK table, as seen in figure 25. 

 

Figure 25 AgentK table containing datetime stamp in addition to the AES Key generated for it 



 

 

36 

 

What this results in, is that anybody with access to the database and the AES IV, 

is able to unencrypt any data stored within the database. An example of this can 

be seen here: 

1. If I wish to unencrypt & unencode the value in ID 4 of the ConfigInfo 

table, I take the time value recorded (see figure 26). 

2. I take the time value, and search for it in the name collum of the AgentK 

table. This provides us a 32-byte value which is our AES Key. 

3. I decode the base-64 value, and decrypt use the AES Key acquired in the 

previous step + the IV (not discussed in this report for sensitivity). This 

results in the unencrypted value. 

 

Figure 26 ConfigInfo data timestamp for Emergency value 



 

 

37 

 

 

Figure 27 Acquiring the AES key via the timestamp value 

 



 

 

38 

 

 

Figure 28 Demonstrating the unencryption of the emergency value using the Key stored in AgentK 

Whilst I understand that the data stored in the database file is not necessarily 

sensitive – although some may find it so (such as admin telephone numbers & 

incoming/outgoing). I have included this in this report since during our source 

code review and analysis of the application, I could not see any reason for this 

implementation. Since the application does not functionally use the data stored 



 

 

39 

 

in the database file, I speculate that the developers have implemented the 

storage of this data for themselves, since it is of no use to the user to store the 

data there. Since the storage of this data also includes the AES Keys within the 

database in order for it to be decrypted, this further adds to this speculation. One 

could question why the AES Keys be stored in the database, if they Ire not 

needed to be used for decryption at some point in time during application 

runtime. Due to this, I leave the readers of this report with this information for 

themselves to interpret hoIver they feel necessary. 

5_ SECURITY 

Overall, the applications security is good. I performed a full security and 

vulnerability test on the application and didn’t find any notable high-risk issues 

that could result in a user’s phone becoming a security risk. HoIver, I did find 

two vulnerabilities in both the Staff and External versions of the application, 

which resulted in personal data leaks if an attacker had access to a device. 

The vulnerability would allow an attacker to leak the application log data from 

the application to storage on the device, ultimately exposing the GPS location 

data discussed in section 4.4. I submitted a responsible disclosure to MND on 

March 10th 2023; I detailed to MND that I would allow a 30-day period (due to 

the fix being trivial) before disclosing the vulnerability in this report. I have yet to 

receive any communication from MND on this vulnerability. From the date of 

publication of this report, the vulnerability is still exploitable.  

5.1_ Vulnerable broadcast receivers  

This vulnerability affects the following versions: 

• 국방모바일보안(외부인) 2.1.17  

• 국방모바일보안(직원) 2.1.25  

Within kr.go.mnd.mmsa.of (Staff) & kr.go.mnd.mmsa.vt (External), the broadcast 

receiver “BroadcastReceiverExternal” is exported, as seen in figure 12. This means 

that the broadcast receiver is callable by anybody on the device, and does not 



 

 

40 

 

require a permission, as shown in figure 13 using Drozer. To fix this vulnerability, 

the ‘android:exported=”True”’ value should be changed to “false”. The broadcast 

receiver mentioned has an intent filter of 

“com.markany.aegis.AEGIS_ACTION_ADMIN_REQUEST”, once this broadcast 

receiver receives a broadcast with this intent, it creates a service, which checks to 

see if there is an extra string key value of “action_admin” & 

“action_admin_exportLog” within the broadcast. This service, then exports the 

local log files that the application has created to the location 

/storage/emulated/0/Aegis/. Here, it stores all historic log files that the 

application has recorded. This is shown again, here in Figure 29. 

 

Figure 29 Broadcast Receiver intent filter method 

The result of crafting a Broadcast message with the action of 

“com.markany.aegis.AEGIS_ACTION_ADMIN_REQUEST” folloId by an extra string 

containing both “action_admin” & “action_admin_exportLog” as seen and 

described above, one can activate the ServiceAEGIS, described in section 4.2.1, 



 

 

41 

 

which will export all applications log files to the /storage/emulated/0/Aegis 

directory. 

One can perform this in Drozer simply by calling: 

``` 

run app.broadcast.send --action 

com.markany.aegis.AEGIS_ACTION_ADMIN_REQUEST --component 

kr.go.mnd.mmsa.of kr.go.mnd.mmsa.of.br.BroadcastReceiverExternal --extra string 

action_admin action_admin_exportLog 

``` 

This resulted in the logs being exported to the storage directory, which is 

accessible without requirement of root privileges and can be exported by 

anybody with physical or remote access to the device. In addition, the application 

itself displays a notification to the user of the logfile being exported as seen in 

figure 30.  

An example of the result of this can be seen in figure 31, where I show the 

exported logs to the storage directory. This example also shows logs which 

contain coarse GPS locations and datetimes, as discussed in section 4.4. 

For further clarity of this vulnerability, if an attacker wanted to export the logs 

directly from the application itself, it would not be possible, since they would 

need the correct permissions or root. As you can see from figure 32, navigating 

or pulling any files from the /data/user/0/kr.go.mnd.mmsa* location is met with a 

permission denied error. This is due to lack of privilege. As seen above, it is 

possible to export the log data to the storage directory, which is accessible 

without privilege or root. 

 



 

 

42 

 

 

Figure 30 Notification message of log export 



 

 

43 

 

 

Figure 31 Example of exported logs containing GPS locations 

 

Figure 32 Example of permission access to application log vs exported application log 

 

 



 

 

44 

 

6_ REFERENCES 

 

[

1

]  

Unknown, “Namu,” [Online]. Available: 

https://namu.wiki/w/%EA%B5%AD%EB%B0%A9%EB%AA%A8%EB%B0%94%EC%9D%BC

%EB%B3%B4%EC%95%88. [Accessed 3 March 2023]. 

[

2

]  

M. Hyeong-chul, “MetroSeoul,” [Online]. Available: 

https://www.metroseoul.co.kr/article/20220106500181. [Accessed 10 3 2023]. 

[

3

]  

“Apple App Store,” Apple, [Online]. Available: 

https://apps.apple.com/kr/app/%EA%B5%AD%EB%B0%A9%EB%AA%A8%EB%B0%94%E

C%9D%BC%EB%B3%B4%EC%95%88/id1485356492?see-all=reviews. [Accessed 10 3 

2023]. 

[

4

]  

Mitre. [Online]. Available: https://cI.mitre.org/data/definitions/532.html. [Accessed 25 

04 2023]. 

[

5

]  

law.go.kr. [Online]. Available: 

https://law.go.kr/LSW/lsInfoP.do?lsiSeq=183644&viewCls=engLsInfoR&urlMode=engLs

InfoR#0000. [Accessed 25 04 2023]. 

 

 

 


